A boundary meshless method with shape functions computed from the PDE
نویسندگان
چکیده
منابع مشابه
A Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملA method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers
In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...
متن کاملa boundary meshless method for neumann problem
boundary integral equations (bie) are reformulations of boundary value problems for partial differential equations. there is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. in this paper, the neumann problem is reformulated to a bie, and then moving least squares as a meshless method is describe...
متن کاملRBF-based meshless boundary knot method and boundary particle method
This paper is concerned with the two new boundary-type radial basis function collocation schemes, boundary knot method (BKM) and boundary particle method (BPM). The BKM is developed based on the dual reciprocity theorem, while the BKM employs the multiple reciprocity technique. Unlike the method of fundamental solution, the two methods use the non-singular general solution instead of singular f...
متن کاملA Domain Decomposition Method Combining a Boundary Element Method with a Meshless Local Petrov-Galerkin Method
A non-overlapping domain decomposition algorithm combining boundary element method with meshless local Petrov-Galerkin method is presented for solving the boundary value problem with discontinuous coefficient in this paper. The static relaxation parameter is employed to speed up the convergence rate. The convergence range and the optimal value of static relaxation parameter are studied, but the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering Analysis with Boundary Elements
سال: 2010
ISSN: 0955-7997
DOI: 10.1016/j.enganabound.2010.03.008